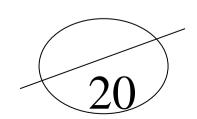

Assessment task

Equilibrium Revision

Question 1

Consider the reaction,


$$3H_{2(g)} + N_{2(g)} \iff 2NH_{3(g)} \Delta H = -91 \text{ kJ/mol}$$

A mixture of hydrogen gas and nitrogen gas is placed in a reaction chamber and allowed to reach equilibrium. A number of events take place to disrupt the equilibrium. Compare the changes that occur between the initial equilibrium position and the final equilibrium position.

Complete the table below by circling the correct response

Action on the equilibrium	Equilibrium constant Circle one of the options below	Mol H ₂ when equilibrium is established	Mol N ₂ when equilibrium is established	Mol NH₃ when equilibrium is established
Addition of NH ₃	Increase	Increase	Increase	Increase
	Decrease	Decrease	Decrease	Decrease
	No change	No change	No change	No change
The reaction chamber is doubled in volume	Increase	Increase	Increase	Increase
	Decrease	Decrease	Decrease	Decrease
	No change	No change	No change	No change
The reaction vessel is heated	Increase	Increase	Increase	Increase
	Decrease	Decrease	Decrease	Decrease
	No change	No change	No change	No change
The reaction vessel is cooled	Increase	Increase	Increase	Increase
	Decrease	Decrease	Decrease	Decrease
	No change	No change	No change	No change
Addition of H ₂	Increase	Increase	Increase	Increase
	Decrease	Decrease	Decrease	Decrease
	No change	No change	No change	No change

The cells in the body produce carbon dioxide as a product of respiration. The equilibrium, between gaseous carbon dioxide and dissolved carbon dioxide, is established.

$$CO_2(g) = CO_2(aq)$$

Carbon dioxide dissolves in water to form the weak acid known as carbonic acid. $CO_2(aq) + H_2O(1) \leftrightarrows H_2CO_3(aq)$

Carbonic acid is in equilibrium with the hydrogen carbonate ion as shown below.

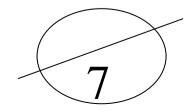
$$H_2CO_3(aq) + H_2O(1) = HCO_3(aq) + H_3O(aq)$$

Air taken into the lungs has a very low concentration of carbon dioxide.

a) What effect will hyperventilating (rapid breathing) have on the blood pH?

1 mark

b) Use Le Chatelier's Principle to explain the changes in blood pH as blood travels from the tissues to the lungs.

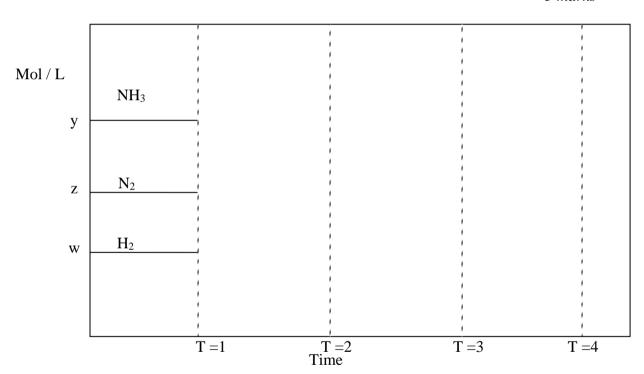

2 mark

c) During a heart attack, blood stops circulating but the cells in the body continue to respire producing carbon dioxide. Before the heart is restarted doctors often inject a solution of sodium hydrogen carbonate(NaHCO₃) directly into the heart. Use Le Chatelier's Principle to explain why.

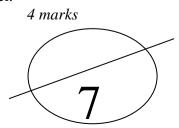
2 mark

d) Use Le Chatelier's Principle to explain how blood pH will change if a person enters a room filled with carbon dioxide gas.

2 mark



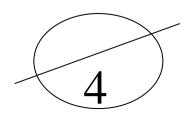
The reaction equation for the Haber process is given below.


$$N_2(g) + 3H_2(g) \leftrightarrows 2NH_3(g) \Delta H = -91 \text{ kJ/mol}$$

Question 3

- 2.80 grams of nitrogen gas reacts with 0.600 grams of hydrogen gas in a sealed 2.00 litre reaction vessel. After sometime equilibrium is reached at which point the amount of ammonia was found to be 0.170 grams.
 - (a) Calculate the equilibrium constant for the above reaction at the specified temperature.

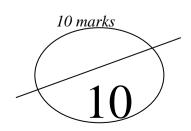
- (b) On the set of axis above sketch the concentration changes of the system when at :
 - i) T=1 helium gas is added to the system to increase the pressure and equilibrium is achieved before T=2.
 - ii) T =2 the reaction vessel is cooled and equilibrium is achieved before T=3.
 - iii) T = 3 the volume of the reaction vessel is halved and equilibrium is achieved before T=4.
 - iv) T =4 hydrogen gas is injected into the reaction vessel.


The reaction equation below describes the equilibrium that exists between the $Fe^{3+}(aq)$ cation, the $SCN^{1-}(aq)$ anion, and the complex ion $Fe(SCN)^{2+}(aq)$.

$$Fe^{3+}(aq) + SCN^{1-}(aq) \leftrightarrows Fe(SCN)^{2+}(aq)$$

The $Fe^{3+}(aq)$ is a pale yellow colour and complex the $Fe(SCN)^{2+}(aq)$ ion is a red colour.

To a pale yellow solution of the Fe³⁺(aq) ions:


Action on the equilibrium	Expected colour change Circle the appropriate response		
potassium thiocyanate (KSCN)			
solution is slowly added	The solution turns from reddish to deeper red The solution turns from pale yellow to reddish The solution turns from reddish to a pale yellow The colour of the solution remains unchanged		
To the resulting solution iron(III)nitrate	The solution turns a deeper red		
is added.	The solution turns from pale yellow to reddish The solution turns from reddish to a pale yellow The colour of the solution remains unchanged		
The resulting solution is now left	The solution turns a deeper red		
overnight so that water evaporates and	The solution turns from pale yellow to reddish		
the volume of the original solution is halved.	The solution turns from reddish to a pale yellow The colour of the solution remains unchanged		
A catalyst is added to the solution	The solution turns from reddish to deeper red		
above.	The solution turns from pale yellow to reddish The solution turns from reddish to a pale yellow The colour of the solution remains unchanged		

Consider the following systems in the table below. If each system is at equilibrium predict what effect the stated action will have on K and the mol of reactants present when the system is allowed to reach equilibrium once more.

Circle the appropriate response in the table below.

Equilibrium system	Action	Change in K	Change in the mol of reactants
$H_{2(g)} + I_{2(g)} => 2HI_{(g)}$	Volume is doubled	Increase Decrease Unchanged	Increase Decrease Unchanged
$H_{2(g)} + I_{2(g)} => 2HI_{(g)}$	Helium gas is added at constant volume	Increase Decrease Unchanged	Increase Decrease Unchanged
$2C_4H_{10(g)} + 13O_{2(g)} => 8CO_{2(g)} + 10H_2O_{(l)} \Delta H = -91 \text{ kJ/mol}$	The reaction vessel is heated	Increase Decrease Unchanged	Increase Decrease Unchanged
$2SO_{2(g)} + O_{2(g)} => 2SO_{3(g)}$	Volume is doubled	Increase Decrease Unchanged	Increase Decrease Unchanged
$CH_{4(g)} + 2O_{2(g)} = > CO_{2(g)} + H_2O_{(g)} - \Delta H \text{ kJ/mol}$	The reaction chamber is cooled.	Increase Decrease Unchanged	Increase Decrease Unchanged

Nitrogen gas and hydrogen gas react in a 2 L sealed vessel according to the following equation.

$$N_2(g) + 3H_2(g) \leftrightarrows 2NH_3(g)$$

The system is allowed to reach equilibrium and the equilibrium constant calculated at 4.00 M⁻². Analysis shows that twice as many mol of hydrogen are present than mol of nitrogen. While the same number of mol of ammonia and hydrogen gas exist. Calculate the mass of nitrogen, hydrogen and ammonia at equilibrium.

Atomic mass N = 14.0, H = 1.01

6 marks

Question 7

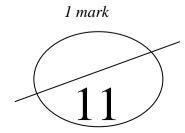
Phosgene gas is a known toxin used in chemical warfare, It is produced according to the equation below.

$$CO(g) + Cl_2(g) \leftrightarrows COCl_2(g) \Delta H = ?kJ/mol.$$

This gas (COCl₂) quickly decomposes when strongly heated to CO and Cl₂ gases.

a) According to the information given suggest whether the synthesis of phosgene is an exothermic or endothermic reaction. Give reasons.

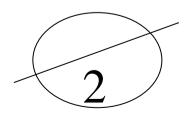
1 mark


b) At a given temperature of 100°C the reaction below has an equilibrium constant, $K_c=2.20~\rm X~10^{\text{-}10}~M.$

$$COCl_2(g) \leftrightarrows CO(g) + Cl_2(g)$$

If 0.100 mol of phosgene, COCl₂, is placed in a 1.00 L sealed vessel, calculate the concentration of carbon monoxide at equilibrium.

3 marks


c) What can you say about the amount of phosgene gas produced at 100°C. Explain

When carbon monoxide binds to hemoglobin it forms bonds that are, roughly, 300 times stronger than the bonds formed between hemoglobin and oxygen. As a consequence the equilibrium constant for the formation of carboxyhemoglobin, according to the equation $\operatorname{Hb}(aq) + 4\operatorname{CO}(g) \leftrightarrows \operatorname{Hb}(\operatorname{CO}) + (aq)$ is much higher than for the hemoglobin-oxygen reaction $\operatorname{Hb}(aq) + 4\operatorname{O}_2(g) \leftrightarrows \operatorname{Hb}(\operatorname{O}_2) + (aq)$. Hemoglobin that is bound to carbon monoxide is no longer available to bind oxygen and this can cause asphyxiation in organisms. Treatment of carbon monoxide poisoning involves the use of a hyperbaric chamber to drive the reaction below. $\operatorname{Hb}(\operatorname{CO}) + (aq) + \operatorname{AO}_2(g) \leftrightarrows \operatorname{Hb}(\operatorname{O}_2) + (aq) + \operatorname{ACO}(g)$.

Explain, using *Le Chatelier's*, how hyperbaric chamber can treat carbon monoxide poisoning.

